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MULTIVARIATE INTERPOLATION AND 
CONDITIONALLY POSITIVE DEFINITE FUNCTIONS. II 

W. R. MADYCH AND S. A. NELSON 

ABSTRACT. We continue an earlier study of certain spaces that provide a vari- 
ational framework for multivariate interpolation. Using the Fourier transform 
to analyze these spaces, we obtain error estimates of arbitrarily high order for 
a class of interpolation methods that includes multiquadrics. 

1. INTRODUCTION 

This paper continues a study, [11], of certain subspaces Ch of C(Rn), the 
continuous complex-valued functions on n-space Rn . The spaces Ch provide a 
variational framework for the following interpolation problem: given numerical 
values at a scattered set of points in R", make a good choice of a function f 
in C(Rn) that takes on those values. 

For the reader's convenience we review some basic features of the develop- 
ment in [11]. The starting point is the selection of an integer m > 0 and a 
continuous function h on Rn that is conditionally positive definite of order 

m. For example: m = 1, h(x) = - I +1x12. Using h, a space Ch with 
a semi-inner product ( )h is constructed. Ch is a subspace of C(Rn), and 
the null space of (, *)h is PmI, the polynomials on Rn of degree m - 1 or 
less. A key property of Ch is this: if xI, ... , XN are distinct points in Rn 
and vl, ... , VN are complex numbers, then among all functions f in Ch that 

satisfy the interpolation conditions f(xi) = v', the quadratic 2f II = (f' f)h 

is minimized by a function of the form f = s + p, where p is in Pm 1 and 

N 

(1.1) s(x) = clh(x-x,) 
1= 1 

with z71 cQx7 = 0 for all jaj < m. For the example mentioned, (1.1) is a 
multiquadric interpolant. 

Because the spaces Ch are translation-invariant, the Fourier transform is a 
natural tool for analyzing them; it plays a central role here. To clarify basic ideas 
and make an orderly division of our results, we avoided Fourier techniques in 
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[11]. We did, however, rely on them in our earlier investigation [10], which 
was in fact prompted by the Fourier methods in Duchon [5]. Use of Fourier 
transforms allows us to give improved descriptions of the spaces Ch (see ?3) 
and allows us to single out certain cases where error estimates of order / > m 
are possible (see ?4). These estimates apply to the multiquadric case as well as 
to related examples given in ?5; for each example given there, the integer / can 
be arbitrarily large. 

2. PRELIMINARIES 

In this section we recall some notation and results involving Fourier trans- 
forms and conditionally positive definite functions. 

Let 32(R") denote the space of complex-valued functions on R" that are 
compactly supported and infinitely differentiable. The Fourier transform of a 
function p in _ is 

(2. 1) ~_(<) = 
- 1 z(x 

? 

~p (x) dx. 

In order to make use of theorems from Gelfand and Vilenkin [7], we adopt 
their definition of mth-order conditional positive definiteness. (Equivalence 
with the definition used in [11] can be seen from Proposition 2.4 and Theorem 
6.1 below.) Thus, for a continuous function h we assume 

(2.2) f h(x)> * O(x) dx > 0 

holds whenever p = p(D)V' with vt in _ and p(D) a linear homogeneous 
constant coefficient differential operator of order m. Here q(x) = (-x) and 
* denotes the convolution product 

?1* *'2(t) = f ?I (XP2(t -x) dx. 

Note that (2.2) can be rewritten as 

(2.3) ff h(x - y)fp(x)>p(y) dx dy > 0. 

The following result can be found in Chapter II, Section 4.4 of [7]; we in- 
corporate a remark at the end of that section concerning the case where h is 
continuous. 

Theorem 2.1. Let h be continuous and conditionally positive definite of order 
m. Then it is possible to choose a positive Borel measure y on R {n _ 0o}, 
constants a^, ,I < 2m and a function % in _ such that: 1 - %(4) has a zero 

of order 2m + 1 at 0=0; both of the integrals f0< <I< I I2'n dy(4), fj~j>l dy(4) 
are finite; for all V E _, 

fh(x)g/(x) dx= [@G -) E D ii(0)y-l 
(2.4) L1-2 ,)I,1<2inJ 

+ D' (0) ' 
1,-1<2inY 



MULTIVARIATE INTERPOLATION. II 213 

This uniquely determines the measure y and the constants a, for IJy = 2m. In 
addition, for every choice of complex numbers ca, ala = m, 

(2.5) E E a,+3flc C > 0. 
Il=tn lfil=m 

The choice of % affects the value of the coefficients a, for yIj < 2m. Note 
that the value of the right side of (2.4) does not change if, for suitable p, j is 
replaced by %+p and the a7, for ll < 2m, are replaced by a + f )0Ydu . 

As can be seen from 

(2.6) (-j)I/I f xp(x) dx = D7 (O) 

changing a coefficient a. on the right-hand side of (2.4) corresponds to changing 
h(x) on the left side by adding a constant multiple of x'. 

For m = 0, (2.4) reduces to f h q = f y dA , where A is the Borel measure 
on Rn given by 

A(E) = 1 (E -{0}) + a06 (E). 

Here a is the measure corresponding to a unit mass at the origin; 6(E) = 1 if 
0 E E and (5(E) = 0 otherwise. Recall that Borel measures that are finite on 
compact sets are called Radon measures. We make the usual identification of a 
Radon measure on an open set Q c Rn with the corresponding distribution in 
?2r'(02) and write (R, Ag) = vIdAt. Also, if f E Ll Ic(R n) we identify it with 
the distribution in ?2Y' given by (f, qi) = f q,(x)f(x)dx. Thus, for in = 0, 
(2.4) says (h, A) = (A ,A). 

For an illustration of the theorem when in $ 0, take n = 2, m = 1, 

h (x) = - 1 + 1x12. Then djt(4) = w(4)dA with 

(27t )2 g13 

and a,, = 0 for Iyl = 2. If % is even, then the coefficients a, for Iyj = 1 are 
also 0. The remaining coefficient is a0 = - (1 + f [1 - -(4)] w(4)d4) . Details 
for this and related examples are given in ?5. 

We use Tk p to denote the kth-order Taylor polynomial for p about 0: 

(2.7) Tk0(4) Dp(0)5 
kyj1<k 

The integral on the right side of (2.4) can then be written as f V - T Vd~u. 
The Schwartz space of rapidly decreasing C' functions and its dual, the 

space of tempered distributions, are denoted by the usual letters 59 and A' . 

Proposition 2.2. Let k be a positive integer and let a be a Radon measure 
on R n { O} such that f g k(1 + g k)- ldjaj() < 00. Let s be a continuous 
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function such that 1 sQks() is bounded on Rn and 1 - s(Q) = O(1 1k) at 0 = 0. 
Let 

(2.8) u(x)= f [e ) - s() S r! du(4) 

Then u E C(Rn), u(x)= O(xlxk) as xj >oo andfor all p in 5" 

(2.9) fu(x)>(x)dx = f (-sT c ) du. 

Proof. Let E(t) = e-it k-ol(_it)r/r! and note that u = u0, where 

Ua (X) = (I - s(4)) e ( ? + s(4)E((x, 4)) du(4). 
11I>a 

From JE(t)j < Itlk we have Is(4)E((x, 4))l < 1xI k1 kjs(4)J. Our assumptions 
on a and s ensure that 1 - s(4) and 1lkI s(4)I belong to L1 (a). Continuity 
of u can be established using dominated convergence. 

To prove u(x) = o(jxjk) note that ku < (cc(a)+ C2(a)IxIk) ), notetha 1u(X) - Ua (X) ? (c(a 
where c1(a) and c2(a) aretheresultsofintegrating I1-s(4)I and I Ikjs(4)j over 
O < I < a with respect to IaI. Given e > 0, choose a > 0 so that c1(a) < e 
and c2(a) < e. From JE(t)j < 21tlk 1 and a > 0 we have ua(x) = O(x0 -1 

as Ixj -> 00. Thus, we may choose R > 1 such that jua(x)l < ckx for all 
jxj >R. Then, for jxj >R, 

u(X)l ' lua(X)l + UO(X)-Ua(X)l < ?X| k k 

It follows that u(x) = o (jxjk) 
To establish (2.9), apply Fubini's theorem and use 

|(-i(x 4) p(x) dx= ED U (O)4! 
I r! ~O a! 

1(fl=r 

This can be verified by using (y1 + + yn )r/r! = Z(l=I.y't/a! and (2.6). o 

If u is defined by (2.8) with a = ,u, k = 2m and s = %, then from 
(2.4), (2.9) and (2.6) we have (h - u, Vs) = (q, Vs) for all V/ in .Y. Here, 

q(x) = 
EjZ1<2in a^,(-ix)/Ay!. 

Corollary 2.3. Suppose h is continuous and positive definite of order m. If 
m > 0, then there are unique constants a,, IYI = 2m, such that 

h(x) - E a,(-ix)/y! = 
o(,X,2,n), as -x* oo. 

1,} 1=2in 

These constants are the same as those appearing in (2.4). 

For ease in dealing with (2.5), we develop some related notation. Let J'n be 
the space of vectors v (v)1a1,?, and let A be the operator on V,, defined IU 
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by Av = w where we = EZ1fj=iAUflV f and Aa f = aa+Af/(a!fl!). Because 

of (2.5), A must be real-symmetric. Thus Av = 0 if and only if v TAv = 0. 
Equivalently, the null space, NAI of A is the null space of the semi-inner 
product (v,w)A =v 7 Aw. Let HA = I/NA be the Hilbert space obtained by 
identifying v and w whenever 11v -WA = 0. The elements of HA are the 
cosets v + NA, and as w varies over such a coset, Aw remains fixed. 

By applying Theorem 2.1 we can recover (2.2) for a more convenient set of 
functions Ao. Let 

(2.10) ?En = {voe? 2fxa(x)dx=0 foral jal < m}. 

Clearly, .% p = {p e 2: -(i) = 0(1l~m) at = 0} . If vg = * A, then 

v/ = II so 

DY D ~A D 5DJ . 
c?iya!fl 

Hence, for v/ = * with p E !m 

(2.11) E D'@(0)-4 = E E a D (C(0) D9 d(0) (m) 2 

,I <I2in (1I=tn lfil=m fi! 

where -(n) (0) is the vector v in J/? given by v(> = D'(0). From (2.4) we 
see that if p E 2'n, then 

(2.12) f h(x) p * O(x) dx = f 2 dy + II U(,n) (0) l 2 

and (2.2) holds. Since 9/n includes the functions p for which (2.2) was as- 
sumed, we conclude that requiring (2.2) for all p E '2r is an equivalent defi- 
nition of h being conditionally positive definite of order m. 

Since l C f2' ,the latter definition makes it clear that h will be condi- 
tionally positive definite of order m + 1 if it is conditionally positive definite 
of order m. If m is replaced by m + 1 in Theorem 2.1, with h held fixed, 
the measure ju will remain the same, the coefficients a, I y = 2(m + 1), will 
be 0, and the lower-order coefficients will change to reflect changes in - 

and 
additional terms in the Taylor polynomial. 

In order to apply results from [11], we verify that h is in the space Q,n(Rn) 
defined there. 

Proposition 2.4. Let h be continuous and assume (2.2) holds for all p E im* . If 
X .. , XN are distinct points in Rn and cl, ... , CN are constants that satisfy 

N1 cx7 = 0 for all lal < m, then 

N 
(2.13) E ,c -jh(x - xj) > . 

Proof. Choose g in Y with fg(x)dx = 1 and g(x) = 0 for all IxI > 1. 
For E > 0, let g, = Ec'g(x/e) and take Ep(x) = Ek=1 ckgI(x - Xk). Then 
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'(4) --= T(4)(E) with T(4) = S ke . From 

N 

D& T() = ZCk(-iXk) e ( k 

k=1 

we find T(4)Q= 0 (JQm) at 0=0. Thus Ad E ?m and 

0 < f h(x)Ep * ,(x) dx = ff h(t - y)qo(t)qo(y) dtdy. 

Letting E - 0, we obtain (2.13). u 

The following observations will be used in the next section. Let em = 

{f: 0 E 2 }. 

Proposition 2.5. Let m > 0 and let u be a positive Borel measure on R{n _ Io} 
that satisfies f(d'/(1l + y )) dji(4) < 00. If 2k > m, then '2r is a dense 

2~~~~~~~~~~~~~~~~~2 
subset of L2 (,u) . 

Proof. Let g E L 2(u) and E > 0. Choose g, E _(R n {0}) so that 

11g - gl1L 2(,) < e. Then f(4) = 1 2kg(4) is in 2B. Since _ is dense in 

S2, we can find v' Em so that for all in Rn, f(4)- () < /(1+12k) 

Multiplying by 1I12k gives 

2k e k 
k 2kg <I g~ 

Let p = (-A) vt. Then p E _ () = 2k -(4) and 

2k\2 

pigs - 1 du <& I ( I 2k) du() 

Thus 11g - F01L22,) can be made as small as desired with p E '!92k . 

Proposition 2.6. If T E ?2' satisfies T( p) = 0 for all p in ?2em then T belongs 
to Pm-I 

Proof. Define T( E ?2Y' by T>tp) = fxfo(x)dx and note that nf{T 1(0): 

al < m} = %n. By assumption, ?rn is contained in T l(0), the null space 
of T. It follows (see Theorem 1.3 of [9]) that there are constants ca such that 
T = T C(ETi. u 

3. FOURIER DESCRIPTION OF Ch 

After analyzing the space 'h, in defined below, we will see that it coincides 
with the space Ch studied in [11]. Among the results emerging from this anal- 
ysis is a Fourier transform description of Fhm . 
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Definition. Let h be a continuous function on R" that is conditionally positive 
definite of order m. We write f E Fh m(R") if f E C(R") and there is a 
constant c(f) such that for all p in ZAm 

(3.1) ff(x)(p(x) dx < c(f) {ff h(x - y)f (x) p(y) dx dy} 

If f E Fh,, (Rn) we let c* (f) denote the smallest constant for which (3.1) is 
true. 

It is easily checked that if fi and f2 are in Fh m' then fi +f2 and af1, a E 
C, are also in Fh in with c*(f, +f2) < c*(f,) +c*(f2) and c*(af,) = lalc(f,). 
If of e Pn-1 and pE 9,then (fuo)=O.sof and c*(f) = 0. 
Conversely, if c*(f) = 0, then f E Pm_l by Proposition 2.6. Thus c*(f) is a 
seminorm with null space PmI; for m = 0, take P- = {}. 

Using (2.12), we note that (3.1) is equivalent to 

(3.2) (f, q() ? c (f) { 11 112L2 (,) +11 K () () } 
2 

for all p in ?,n . If v E Vm and 

(3.3) q(x) = , (Av)j(-ix), 
lal~tn 

then (q, p) = 
Z1(l=f(Av)(,DK6(O) 

= (s(m)(0) V)A,so q E C6 m with c*(q) = 

11vH1A. If g E L 2Cu) and u is defined by (2.8) with a = gy , k = m and an 
appropriate choice of s (take s = 0 for m = 0 ), then, for p E Am , (2.9) gives 
(u, p) =f -?gcdy. It follows that u E m with c*(u)= HgHL2(,,). 

Clearly, Fh ,n includes all functions of the form f = u + q + p with u, q 
as above and p E Pm-l The next result, when combined with Proposition 2.6, 
shows that all functions in 'h, in can be obtained in this way. 

From the behavior of u(x) as x- 00, described by Proposition 2.2, we 
see that if m > 0 and f = u + q + p, then f(x) = o (IxIm) is equivalent to 
q = 0 (or Av = 0). In any case, 

(3.4) in (Rn) c ff E C(Rn): f(x) = 0(jxlm) as xK -> oo). 

Proposition 3.1. Let m, h, y and as be as in Theorem 2.1. If f E Fhm, then 

there is a function g E L 2() and a vector V E Vm such that for all qp in ZBm 

(3.5) (f, p) = f gd + E 
(Av),DK(). 

This uniquely determines g and the coset v + NA. 

Proof. Define J: 9m > H = L2 E HA by J~p = f + A) 
From (3.2) we see that 1(f, p)j < c*(f)AIJfoH. From this we deduce that, 
if J6P1 = J6p21 then (f, Il) = (f, P2)* It follows that there is a bounded 
linear functional L on the image J?ln such that L(J(p) = (f, p) for all p 
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in 2X, . Since H is a Hilbert space, we can choose g e (v + NA) so that for 
all (p in 9,n (f, p) = (fe, g @ (v + NA))H. This gives (3.5). 

For uniqueness, we show that J_22m is dense in H. Let g, E L2(U), w E Vm 
and q > 0 be given. Take 2k > m and use Proposition 2.5 to choose m E !2k 

with 2lg1 - q IIr( < P7. Note that J~pj = 'I 0DO since 2k > m. Put p(4) = 

ZEfl~,fl wi/a! and take X E ? so that 1-^(4) = O(IIm?1+) at 0 = 0. Define 

q/E E 2 by i(i) = p( )2(G1&). Then Jqb, = ED(w +NA) . Choosing ? close 
enough to 0, we have IIiKIIL2(,z) < q. Then g + (w + NA)- J(1 + )IIH< 
2q. a 

If f E Fh, Ilet Af = g E (v + NA) be the point in H =L 2(,u) E HA de- 
termined by (3.5). Clearly, the resulting map A: h -m H is linear. That A 
maps onto H is evident from the remarks leading up to Proposition 3.1. From 
(3.2) and (3.5) we see that c*(f) = IIAfIIH. Note IIAfIIH = {(fI fbl}112 = 

IIfIIh, where (f1, f2)h = (Af1, Af2)H is a semi-inner product for Wh m . There 
is a corresponding inner product on Fh ,nlpm- 1 which is then a Hilbert space 
isomorphic to H under the quotient map associated with A. 

The following provides a converse to Proposition 3.1 and clarifies how the 
Fourier transform relates f to g, v in (3.5). 

Proposition 3.2. Let m, h, u and ad be as in Theorem 2.1. Fix g E L2 (u), 
V E VJj and f E ??X'. The following are equivalent: 

(a) (3.5) holds for all ho in 9n; 

(b) f E 5?' and for every al = m, &`F = AQ, where F is the inverse 
Fourier transform of f and A, is the Radon measure on Rn given by 

(3.6) i(tE) = / (g(,) dy4 ) + a!(Av)(, (E) . 
Ed {0} 

When this is the case, f Af = g E (v + N ) and (f, f)A = f 1gl 2di + 
T- v TAv. 

Proof. Let q be as in (3.3) and let u be defined by (2.8) with' a = gj, k = m 
and a choice of s that satisfies the hypotheses of Proposition 2.2. If (a) holds, 
then (f, y) = (u + q, Ap) for all y0 E 3en . By Proposition 2.6, f - (u + q) = 

P E Pn- -. If F = f and i2(4) =- 4(4), then 

((F, fo) = (F, y) = (f, q/) = (u, yi) + (q + p, y') 

X so Ti _0) g dy+ E bD(t e(0), 

where the constants bQ are determined by q + p(x) = I (l<n b( (ix)'t. Thus, 

(3.7) (( F, 0) = f (t 87(4) - 0) g(4)dji(4) + c!(Av)(jp(0), 
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which establishes (b). To see that (b) implies (a), let f1 = u + q with u and q 
as above. Then (3.7) holds for F1, where F1 =f1. Hence, FaF- =,A. If (b) 
holds, then g'F1 = g'jF for all jal = m. This implies F1 -F = Za<m baDa J , 

which says f1 - f c Pm, I. Therefore, (a) and the other assertions about f 
follow from the corresponding facts about f1. 

For typical choices of h (e.g. those considered in ?5) the measure 't is 
absolutely continuous with respect to Lebesgue measure, dy(g) = w(g)dg, and 

aY = 0 for all IYI = 2m. In such cases the measures Aa in (3.6) are given 

by functions Fa in L~l(R'); dA(i%) = F (g)dg, where F(g) = 

From Daf = ((-ig)iF) = (i)m , we see that (Dafy^ = (-i)m(27r)"F E 

L c (Rn) , where FPj() = F>- ). Let 

(3.8) r(g) = ________________ 

with r(,) = oo when w(-g) = 0. If dp(g) = r(g)dg, then (Daf)- e L2(p) 
and 

|| (D f)- IIL2(P) = g , dy() 

Using (4.2) below with / = m, 

(3.9) 
! 

mL11 (D'ifY^ 112(p) = j 1g12 dy = (f, fA. 

Corollary 3.3. Let m, h, ,u, and a, be as in Theorem 2.1. Assume dju(g) = 

w(g) d, and a,, = 0 for all IYI = 2m. Let p be the Borel measure on Rn 
defined by dp(,) = r(g) dg, with r as in (3.8). Then f c ?h,,n if and only if 

f Ez5i29 and (D'tf)^ e L2(p) for every I aI = m. In that case, (f, f)* is given 
by (3.9). 

The translation invariant nature of Fh in is evident in the following 

Proposition 3.4. Let T be a compactly supported Radon measure on R n. If f 
is in Fh 1,71 then so is T * f . Furthermore, if A: Fh,,n -* L2 (ji) e HA is as 

defined above and Af = g E (v + NA), then A(T * f) = tg e (t(0)v + NA) , where 

t(4) = f e1(x"?dT(X). 

Proof. If qI(x) = f y(x+y)dT(y), then (T*f, y) = (f, y4) and 

q-1 = ff (Xe ?) (x + y) dx dT(y) 

(3.10) (z 4) 
= ef e1 p~(z)dz dT(y)= 
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If Af = g e (v + NA), so that (3.5) holds, then for all p z m 

(z* f, (P) =f d gd ? +E Da W()(Av) 
IaI=m 

= |f tg du + E t(O)D Q(0)(Av)a. 
IaI=m 

This gives (3.5), with f, g, v replaced by z * f, tg, t(O)v; the assertions 
made are now apparent. o 

In the next result, (3.1 1) is equivalent to A(v * h) = n e (w + NA) and (3.12) 
says v(f) = (v * h, f)h . From this it is clear that Wh m satisfies condition (c) 
in Theorem 1.1 of [11]. That conditions (a) and (b) are also satisfied can be 
seen from the discussion above in which the map A was introduced. Applying 
Theorem 1.1 of [1 1], we conclude that Fhm = Ch . 

Proposition 3.5. Let m, h, ,u and a, be as in Theorem 2.1. Let v be a com- 
pactly supported Radon measure on Rn and assume that f xadv(x) = 0 for all 
jaol < m. Then v * h ez Fhn andfor all y in m 

(3.11) (v*ph,)=fOnd,?+ E(Aw)aDK6(0), 

where nQ() = f e(x) dv (x) and wk - Dfn(O) = f (ix)fldv(x). Furthermore, 
if f ez hm and Af = g D (v + NA), then 

(3.12) f f(x)dv(x)= ng d + w TAv. 

Proof. If Vg(z) = f y(z + y)dv(y), then from (2.4), 

(3.13) (v * h, y9) = (h, Y) =f -XT2m-1 dy + E D (0) 
a' 

<'I?2m 

and, as in (3.10), - = -n. Clearly, D'n(O) = 0 for all jal < m. If y ez 
then D7Y (O) = 0 for IYI < 2m, and for YI= 2m 

Df t i(O) n r!! DCnwith(P(W) 1 Thus, (3.11) follows from (3.13). To establish (3.12), choose a real-valued 
function r in _ with r(O) = 1,and for e > 0 let 0E(X) = f Gr (r()dv(y). 
Then Qg E9, cz -An and 

(f,~~ 
__ 

f)=| g dyu + E (Av )( D' ?. 

This yields (3.12) because 

f f(x) dv(x) = lim (f, ?9) and c(g) =?(eg)nQg)* 
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For s asin (1.1) wehave s=v*h with f ydv= ENec,(x,). Thus, such 
functions s belong to K- m. 

The distribution DKh, IKI > m, can be obtained as a limit of v * h's by 
choosing v 's that correspond to appropriate difference operators. Such v 's sat- 
isfy the orthogonality condition f x1dv(x) = 0, jal < m. Hence, the following 
may be regarded as a limiting case of the situation considered above. 

Proposition 3.6. Let m, h, ji and a be as in Theorem 2.1. Fix K with IK! > m 

and let p(,) = (i4)K. Then, p E L 2(ji) if and only if the distribution DKh 
belongs to 

h, in'. In that case, A ((-D)Kh) = p GD (w + NA) with wa = Dap(0), 

1at = m. 
Proof. Let v = DKY, so o= p. If q E Am' then, by a calculation like that 
for (2.1 1), 

aDp) =E a Dnp(O) Dfl i(O) D7(p-(0 = 
a ! 

I1'I<2tn kfl=in flhl=m 

Using (2.4), we have 

(3.14) ((-D)K h, () = (h, .)= f p -du + > (Aw),D/ f(O) 
P I E 

for all y Ez Ala. This is (3.5) with f = (-D)Kh, g = p and v = w. If p E 

L 2(u) we apply Proposition 3.2 to see that f E Kh m and Af = p e (w + NA) . 

2~~~~~~~~~~~~~~~~~~2 If p ? L (ji) we apply Proposition 2.5 to obtain a sequence go E 92k such 
that f I-,12di = 1 and f p-,ddu --oo. We take 2k > m so that DY-j(0) = 0 
when I/1 = m. Then (3.14) gives 

((-D) Kh, 'p) = du -0 0. 

Since lI 1II2L + ii(m4")(0)12i = 1 , we see that f = (-D)Kh cannot satisfy (3.2) 
and hence cannot be in Kh, in. ? 

4. ERROR ESTIMATES 

In this section we derive bounds on the difference between a function g in 
Kh, ,, and a function gX of minimal Fh in norm that agrees with g on a 
set X c Rn of 'interpolation points'. These error estimates involve a param- 
eter that measures the spacing of the points in X and are of order I in that 
parameter; our derivation assumes I > m and 

(4.1) fs 421 dy(4) < 0. 

For the examples given in ? 5, this assumption is satisfied for arbitrarily large val- 
ues of 1; see (5.2) below. In particular, the estimates apply to multiquadric in- 

terpolation, since the example there with a = - 1 gives h (x) = - i( 1 + 2x 12). 
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Before starting on the error estimates, we look at a related implication of 
(4.1). Let p(G() = (i4)`i. From 

(4.2) 
1a14= 

we observe that (4.1) holds if and only if pa E L 2Cu) for all tat = 1. If a 
distribution has all of its Ith order derivatives given by continuous functions, 
then it will belong to CI(Rn). Thus, the following result shows that (4.1) holds 
if and only if Wh in C CI(R) ). 

Proposition 4.1. Let m, h, ji and a, be as in Theorem 2.1. Fix a with 

jai > m. Then thefollowing are equivalent: 

(a) pa e L2 (jI), where P(j() = 

(b) for every f in Fh m X the distribution Daf belongs to C(Rn) and there 
is a constant c, such that for all f in h' tI 1DafI ? <cCtllflh; 

(c) there is a point x0 in Rn and a constant ca such that for all f in 

hin n C , ID f(xo)I < caIlfIth 
If these are true, then for all f E Sh m and all y E R, 

Daf(y) = (f, by * (-D) h) h 

Proof. Let f e Fh,,n and let F be its inverse Fourier transform, so that F = f. 
If tat = m, then, by Proposition 3.2, gjF = A % with Aa given by (3.6). If 

tat > m, then a = a' + fl with Jait = m. Hence, 4aF = A with Aa = 4 
where A,< is given by (3.6). If (a) holds, then Aa is finite; for tat = , 
f dIJ =f l'4g(g)Itdj(g)+/(Av)aj and for tat > m, f dIAJI = If g(g)Idy(g). 
Thus, i, is continuous and bounded by f dtI't . Since (iD)af = (gaF)^ = Aa 
we see that (b) holds with ca = lIP a eD (P(m)(O) + NA)IIH . Thus, (a) implies (b). 

That (b) implies (c) is obvious. To see that (c) implies (a), let tg be an 
arbitrary function in -(Rn {O}) and define u by (2.8) with a = yVu and 
k = m. Then, u E Wh an S Au = q1 e 0 and ttullt = I q~t2du. In addition, 
u E C' and 

Da u(x0) = f -(Xo i, 
a 

ig( ) d/l (). 

Thus, (c) gives I Se -(xo "( (-q/ (4)dy I < cotI IttIL2 (m. Since this holds for 

all Vs in 2 (Rn { 0 }), a dense subset of L2(jt), (a) must be true. 
To verify the last assertion, suppose f c ,h m with Af = g e (v + NA) . By 

Proposition 3.6, A((-D)(ah) = P(D e (P{m)(0) + NA) . Using Proposition 3.4 with 
T = P1, we have t(g) = e' (Y and 

(4.3) A(J * (-D) ah) = tp e (Pi (?) + NA). 
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Thus, (f, (, * (-Dth)h= f gTpdu + vTApCm)(O),=(i)mA(y) Here, ,% is 

as above so, as already noted, A. = (iD)af; this gives the desired equality. o 

Our error estimates will be based on the following 

Theorem 4.2. Let m, h, t and a, be as in Theorem 2.1. Assume that ,t 

satisfies (4.1) with I > max{l, m} . For a point x0 in Rn suppose that a is a 
real-valued, compactly supported Radon measure on Rn such that 

(4.4) p(x0) = fp(x) du (x) 

for all p in P11. Then for all f in Whn 

(4.5) f (x0) - ff(x)da(x)) < cIIfIIh fIx - x01IdIaI(x), 

where c = {S+? f I21/(l!)2 dyi()}112 with s = Zlal=m Elfll=m IAflI for I = m 
and s = 0 for 1> m. 

Proof. Let v = (5 - a . By (4.4), fp(x)dv(x) = 0 for all p E P-11 . Since 

1 > m, Proposition 3.5 applies to v, and from (3.12), 

(4.6) f f(x)dv(x) < I|n e (w + NA)IIH Ilf Ilh 

Here, w =f (ix)fdv(x), =m. If I > m, then w = 0; if I = m, then 

#= i=n f(x - xo))dv(x) = 0- im f(x - xo)) do(x). 

Defining R(0) by e'6 = ZIk (iO)k/k! + R(O), we have IR(0)I < 101j/l! and 

e - ' )(E,)= 
f 

eI'(x-r v' d v (x) = JR ((x - x0, I)) dv(x) 

- fR((x-xo, ))da(x). 

If b = fix - x0IIdIcI(x), then In(4)I < bI~I'/l! and, for I = m, IwiI < b. 
From this we obtain IIn e (w + NA)IIH < cb and (4.5) follows. n 

To obtain the error estimates mentioned at the beginning of this section, we 
apply Theorem 4.2 to f = g - gX. Because of the minimum norm property of 
gX IfL, ? IlgIlh . Since other fixed bounds on IlfIlh result in acceptable error 

estimates, the minimum norm requirement on g could be relaxed to simply 
a requirement that II9X11h not exceed some set bound. If we choose a so that 
supp a c X, then f g - gXd. = 0, and (4.5) gives 

(4.7) g(x0) - gX(x0) < clIfIlh fIx - x01IdIoa(x). 
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To make such a choice of a possible, it may be necessary to restrict xo. From 
(4.4) we see that if p 0 on supp a then p(xo) = 0. Let 

NjI(X) ={p Ez PII: p(x) = 0 for all x E X}, 

(X)1_ = {x E Rn: p(x) = 0 for all p _E NI(X)} . 

Proposition 4.3. Let E1- (xo, X) be the set of all real-valued, compactly sup- 
ported Radon measures on Rn that satisfy both (4.4) and supp a c X. Then 
El_F (xo, X) is nonempty if and only if xo E (X),_1 . 

Proof. Necessity of xo E (X),_, is evident from the preceding discussion. To 
see that this is also sufficient, consider the linear functionals on P11 defined 
by Lx(p) = p(x). Choose a (finite) subset Y of X such that {L : y C Y} 
is linearly independent and Lx e span{LY,: y e Y} for all x in X. Then, 

Nl_,(Y) = N,_,(X) and (Y)1_1 = (X)_, . Also, {LY: y E Y} is a basis for 

(PI_ I INI,_ I (Y)); let {p, + N1_ 1 (Y) : y c Y} be the dual basis. If the polynomi- 
als py are replaced by their real parts, the result is still dual to {LY: y C Y}. 
We may therefore assume that each py is real-valued. For xo in (Y),_1, 
LY gives a linear functional on P1 I/N, -(Y). Thus, Lx0 = Eycy cy LY with 

cY,= LX (pY), and it follows that a =EYy cy6Y is in E1_ (xo, X). C 

Of course, (4.7) will give a better error estimate if a is chosen from 

El1I(xo, X) so as to minimize fix - xoIIdIaI(x); we made no attempt to 
do this with our choice of a in the preceding proof. 

We turn now to an analysis of the rate at which the error estimate goes to 
zero as the coverage by X improves. For this we fix a region Q and a function 
g E Fh in and, for various X, look at bounds on Ig - gX I given by (4.7). 
Here we use the notation If l = supxEQ If(x)i. 

The number d = d(Q2. X) defined by 

(4.8) d(Q, X) = sup inf Iy - xI 
YEQ XEX 

is a standard measurement of how closely X covers Q. Using (4.7) and some 
mild assumptions about Q, we will show that 

(4.9) g - g IQ = O(d'). 

In order to use (4.7), we assume (4.1). In that case, Proposition 4.1 assures us 
of a uniform bound for the Ith order derivatives of g - g x . From this and 
(4.9), we can deduce that the derivatives D'k(g - g X) of intermediate order 
0 < jal < I satisfy O(dl-'1l) estimates. 

To establish (4.9), we proceed along lines used by Duchon [6]. We start by 
assuming that there are positive constants M, co such that for every 0 < e < 
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where Te =t cz Rn: B(t, c) c Q}, B(t, r) = { x E Rn : Ix - tj < r}. Argu- 
ments in ? 1 of [6] show that such constants M, co will exist if Q satisfies a 
cone condition. 

Next we select a P1 1-unisolvent set of points a(a) c Rn, lal < 1. A corre- 
sponding set of Lagrange polynominals, p' E PI 1, y < I, is determined by the 
requirements: p,(a(a)) = 1, for a = y; p Y(a(a)) =0, for a 5 y. The matrix 

Aag = (a(a))f, lal < 1, lfI/ < I is nonsingular. If py(x) = EIfI<l(A l, Yx3, 
then p,(a(a)) = (AA1)- 

I , so p, = p a. The function a -- a(a) can be iden- 
tified with a point in B = f11< B(a(a), (5). Clearly, b z B if and only if 

lb(a) - a(a)l < ( for all lai < 1. Now choose 5 > 0 so that Ba f = (b(a))fl 
is invertible for all b E B. As justified by replacing the points a(a) with the 
points 5-1a(a), we assume (5 = 1. 

Choose R so that B(O, R) contains all the unit balls B(a(a), 1), ala < 1. 
The Lagrange polynomials pb depend continuously on b. Let 

A(r) = sup { Z pb(X))I: IxI < r, b e B 

For d = d(Q, X) < co/R, set e = Rd and fix a point t in T, . The balls 
B(t + da(a), d) are contained in B(t, Rd) = B(t, c) c Q. By (4.8), for every 
I a < I, there is at least one point x in X n B(t + da(a), d) . If b is the point 
in B defined by x(, = t + db(a), and 

with x0 arbitrary, then supp a c XnB(t, E), and (4.4) holds for all p cE PI-I 
to verify (4.4), take q so that p(x) = q((x-t)/d) and use <1 pfb(y)q(b(a))= 

q(y) with y = (xo - t)/d. 
Suppose xo z B(t, 6M + d). Then, Jxo - tI/d < (RM + 1), so fdlal < 

A(RM + 1). Also, for x c supp a, 

Ix - x01 < ?x - tl + it - x0l < (R + RM + l)d. 

Thus, fIx-xol dial < Cod' with C? = (R+RM? l) I(RM+ 1). Since 
x0 is any point in B(t, cM + d), (4.7) gives Ig - XB(t eM+d) < cllfllhCCd'- 
By (4.10), if y z Q, we can choose t c T, so that y E B(t,cM). Then 
B(y, d) c B(t, eM + d), so for every y cE Q, 

(4.11) g - gX IB(y, d) < CCo|f llhd'. 

This is more than required for (4.9), but will be useful for derivative estimates. 
By Proposition 4.1, f = g_ gX is in CI(R'). For y E Q, 0 E R and 

it E Rn with lul = 1 , let y(0) = f(y + Ou). Then 

(4.12) (P (k) (0) = k! ,3 D'Df(y + Ou). 
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By (b) in Proposition (4.1), k(p/)IR ? C'IlfIlh with C' = 1! 1~1 ic/a!. From 
(4.11) we also have a bound on qAds where I is the interval [-d, d]. For 
0 < k < 1, the results of Gorny [8] summarized in [12] then give 

(4.13) 1(k)(0)1 < CkIfIIhdlk, 

where Ck = 16(2e)k (CC )l k/[max(C', 1!2-1 CC)]k/I. Note that Ck can be 
calculated from n, 1, m, h and M; the choice of R depends only on I and 
n, so C0 requires only 1, n, M, while c and C' require only m, h, 1, n. 
Combining (4.12) and (4.13) gives 

a 

(4.14) sup D& f(y) Ck hl-k 

for every y E Q. Since 
a 

IVIk~ = SUP 
1 

Lu-v 
jauj k 1 I a l 

is a norm for Vk , we conclude that {Daf IQ - O(d1 al) for every jaj I 1 . To 
summarize, we state 

Theorem 4.4. Let m, h, ,u and a Y be as in Theorem 2.1. Assume (4.1) holds 
with I > max{f1, m }, and suppose 2 is a subset of R' that satisfies (4.10) for 
some M, ,e > 0. Then there are positive constants C, do such that if f E h, m 
vanishes on a set X and the number d = d(Q, X) defined by (4.8) is less than 

do, then for all jail < , 

(4.15) IDafL < CYIIfIh dc1a1. 

5. EXAMPLES 

In this section we look at some examples of conditionally positive definite 
functions h. For these examples we determine the measure ,uc and coefficients 
a,, IyI = 2m, that appear in (2.4). As can be seen from (5.2) below, these 
examples all satisfy (4.1) and do so for arbitrarily large choices of 1. Thus the 
error estimates in ?4 apply, showing that for interpolation based on any of the 
h 's given here, approximation of arbitrarily high order can be achieved. 

For a E R. let wa be the function on Rn defined by 

(5.1) Wa = (27r )n2 2a/2 gi(n-a)/2 

where K is a modified Bessel function of the second kind. From the behavior 
of K,,(r) at r = 0 and r = oo we note that 

(5.2) f I21IWa@()d< < oo 
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if and only if a + 21 > O. For a E R, a O -2, -4, ...,let 

(5.3) ha(x) - F(a/2) 
(1 + IXI 2)a/2 

and for a = -2k, k = O 1, 2, ...,define ha by 

h-2k(x) = a air [a (X) - F(a/2)(1 + IX12)k] 

(5.4) k+l 

( k! (1x+ Xl) log(?x+l ). 

The last equality can be verified by using F(a + k + 1) = (a + k) ... (a) F (a) 
together with 

d ( 2 + IX2 ) t liM 
( + X2al2 _ (I + _ X__ )k 

dtk a--*-2k (-a/2)- k 

Lemma 5.1. If is e 9(R' {O}), then for all a in R 

(5.5) f ha(X) O(x)dX = f Q()W a(@ ) dg. 
Proof. A basic fact used in the theory of Bessel potentials is that (5.5) holds 
for all s e 56 if a > 0; see [2], [3] or [4]. For is e O(Rn {-}) an analytic 
continuation argument gives (5.5) for a : 0, -2, -4, . To obtain (5.5) for 
the remaining values of a = -2k , we take limits. If f(t) = (1 + IX12)t and 
a 4 0, -2, -4, ..., then 

[ha(X) - F (a) (1 x2)k] = (2 ?k) F () f' f (k - ?2 + k) s) ds. 

Estimates from this can be used to justify an application of Lebesgue's domi- 
nated convergence theorem that shows 

h-2k (x)y9(x)dx = lim2k] [ha(x) -F (1 + Ix 2)k ] (x)dx. 

Now i e O(R n {0}), so f(1 + Ix12)k p(x)dx = 0. We therefore have 
f h 2k(x)y9(x)dx = lima_ - 2kf() Wa ()dg; which gives (5.5) foir a = -2k . o 

Theorem 5.2. If m is a nonnegative integer and a + 2m > 0, then (2.4) holds 
with h = ha) dpu(g) = wa(Q)dg, and at = 0 for Iyj = 2m. 

Proof. If m = 0, then a > 0. As already mentioned, (5.5) holds for all is in 
56 if a > 0; thus, we have (2.4) with m = 0 and a > 0. For the rest of the 
proof we assume m > 1 . Let 

I' F -i~x,~) 2m-1 k1 
U 

1'~~~~~~~-(x, g)E (_ )) 
Ua(X) =] [e -X()O k! J Wa() d . 

By Proposition 2.2 we have ua e QRn), Ua(x)= o(x2m), and for all is 
in CX 

Ua (X)Y (X) dX = (Sa , A) 
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where (Sa, V) = [V - XT2m l vl(g)Wa()dg Let Ta be the tempered distri- 
bution defined by f ha(x)Y(X)dx = (Ta, A). By (5.5), (Ta, ig) = (Sa , ig) for 
all tg e -(2' {O}) . Thus, (Ta -Sa) = ha-Ua is a polynomial q. Both 

2m 
a-U 

ha and ua are o(IxI ) at IxI = oo, so deg q < 2m. The desired instance of 
(2.4) now follows from (ha - q, y) = (Sa, , 

6. EQUIVALENCE OF DEFINITIONS 

Theorem 6.1 below, when combined with Proposition 2.4, shows the equiv- 
alence of the definition of conditional positive definiteness adopted here with 
that used in [1 1]. As in [1 1], we define PmlI to be the space of all finite mea- 
sures v on Rn that have support consisting of a finite set of points and satisfy 
v(p) = 0 for all p E PMl. The space obtained by relaxing the support re- 
quirement to allow compact sets, rather than only finite sets, will be denoted by 
(P ) If I = Cj then 

N N 

v (v*h) = EEcj h(x1 - x), 
1=1 j4= 

and v E rn-i if and only if ENi1 CIx7 = 0 for all lal < m. If dv(x) = (x)dx 
then 

v v * h) = f ?(x) (y)h(x - y) dx dy, 

and v isin 
(Pnq) E 

Theorem 6.1. Let h be an arbitraryfunction in C(Rn). If v * h) > 0 holds 

for all vEP,1, then it holds for all v E (P,~1). 

Proof. Fix v in (Pal) and let K be its support. Recall that the finite Borel 
measures on K form the dual C(K)' of C(K), the continuous functions on K 
with the sup norm topology. The norms involved in this duality will be written 
as follows: for f E C(K), If IK = SUPXEK If(x)l; for a E C(K)', Ilall = f dal. 
Let hY,(x) = h(y - x) . K is compact, so for every E > 0 there is a finite set 
FE c K such that, if y E K, then Ihy - hY IK < E for at least one yo E FE . If 
a is in the weak* neighborhood 

U(v, FE, e) = { E C(K): I(a - v)(ho )I < Efor all yo E FE} 

and y E K, then, for a suitable choice of yo E FE, 

I(a - v)(hY)I = 1(a - v)(hY - hY ) + (a - v)(h, O)l ? (Ila - vil + 1)6. 

Since (a - v) * h(y) = (a - v)(h,), we get I(a - v) * hIK < (cIa - vIl + 0) for 
all a E U(v, FE, e) . For such a let w be the number defined by 

w=a (Uf*h -> ( *A =9 ((ci-v)* )+(ci-v) (v*h 

and observe Iwl < llcill(c - v) * hIK + I(c - v)(v * h)l. 
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Let B = {i E C(K)': I1I < I1vII} and take C = Bn(Pl1),S=BfnPl71. 
By arguments given below, S is weak* dense in C. This allows us to choose 

a E S n {Ca E U(vJ, F,S, E): 1(a - vJ)(v * h)l < E} . 

For that choice we have a(o * h) > 0 and 

wlW < 1lall (Ila - vo11 + 1 ) e + e < IlZvlI (211v 11 + 1) e + E . 

Since w is arbitrarily small, we see that v(v * h) must be arbitrarily close to 
points on the positive real axis and hence must be greater than or equal to zero. 

C is convex and weak* compact so, by the Krein-Milman theorem, C is 
the closed convex hull of its extreme points. Since S is convex, it will be 
weak* dense if it contains all of the extreme points of C. Suppose go is an 
extreme point of C that is not in S. Then supp an cannot be a finite set, 
so we can subdivide it into J = 2(1 + dim Pm_ 1) disjoint subsets E1 , ... . EJ 
with laol(E) $& 0. Let aj(E) = a0(EJ n E) and take ca j = f x'daj(x). By a 
dimension argument, there is a point a E RJ {0} that satisfies the equations 

J J 

ZaJ1IoJII = 0; ZajcaJ = O. jai < m. 
J=1 J=4 

For t E R. let Ct = EJ I(l + ta)or . Then, t e(P )and if (I +taj) > O 

J J 

Iiotil = E(1 + ta1)IIoVII = E IIoJ II = IlooII ? l vii - 
J=1 J=1 

Thus, ct E C for all t in an interval about 0. This contradicts the assumption 
that co was an extreme point of C because at = o only if t = 0, as seen 
from the fact that a 0 O and jlajjI : 0 for all j = 1, ..., J. o 
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